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a b s t r a c t

In this article, a novel adaptive estimation is proposed for varying coefficient models. Un-
like the traditional least squares basedmethods, the proposed approach can adapt to differ-
ent error distributions. An efficient EM algorithm is provided to implement the proposed
estimation. The asymptotic properties of the resulting estimator are established. Both sim-
ulation studies and real data examples are used to illustrate the finite sample performance
of the new estimation procedure. The numerical results show that the gain of the new pro-
cedure over the least squares estimation can be quite substantial for non-Gaussian errors.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Since the introduction in [5,17], varying coefficient models have gained considerable attention due to their flexibility
and good interpretability. They are useful extensions of the classical linear models and have beenwidely used to explore the
dynamic pattern in many scientific areas, such as finance, economics, epidemiology, ecology, etc. By allowing coefficients to
vary over the so-called index variable, themodeling bias can be significantly reduced and the ‘curse of dimensionality’ can be
avoided [14]. In recent years, varying coefficient models have experienced rapid developments in both theory and method-
ology, see, for example, [34,19,12,13,3,11,31,32], etc.We refer to readers to Fan and Zhang [14] for a nice and comprehensive
survey.

Let y ∈ R1 be the response, x = (x1, . . . , xd)T ∈ Rd be the covariate vector, and u ∈ R1 is the index variable. The
varying coefficient model is defined as

y =

d
j=1

gj(u)xj + ϵ, (1.1)

where {g1(u), . . . , gd(u)}T are unknown smooth coefficient functions. Throughout this article, we assume the random error
ϵ to be independent of (u, x), with mean 0 and a finite second-order moment σ 2. By setting x1 ≡ 1, it allows a varying
intercept in the model.
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Hastie and Tibshirani [17], Hoover et al. [19], Chiang et al. [4] and Eubank et al. [7] proposed using smoothing spline to
estimate coefficient functions. Polynomial splinewas used in [21,22,20].Wu et al. [34], Hoover et al. [19], Fan and Zhang [12]
and Kauermann and Tutz [23] adopted kernel smoothing to estimate coefficient functions. Fan and Zhang [13] further
studied a two-step estimation procedure to deal with the situation where the coefficient functions admit different degrees
of smoothness. Recently, Wang and Xia [32] proposed a shrinkage estimation procedure to select important nonparametric
components. Wang et al. [31] developed a highly robust and efficient procedure based on local ranks. Nevertheless, most
existingmethods used least squares type criteria in estimation, which corresponds to the local likelihoodwhen the error ϵ is
distributed as a normal randomvariable. However, in the absence of normality, the traditional least squares based estimators
will lose some efficiency.

In this article, we propose a novel adaptive kernel estimation procedure for varying coefficient models. It combines the
kernel density estimation and the local maximum likelihood estimation so that the new estimator can adapt to different
error distributions. The new estimator is ‘‘adaptive’’ and ‘‘efficient’’ in the sense that it is asymptotically equivalent to the
infeasible local likelihood estimator [27,9], which requires the knowledge of the error distribution. An efficient EMalgorithm
is proposed to implement the adaptive estimation. We demonstrate through a simulation study that the new estimate is
more efficient than the existing least squares based kernel estimate when the error distribution deviates from normal. In
addition, when the error is exactly normal, the new method is broadly comparable to the existing kernel approach. We
further illustrate the effectiveness of the proposed adaptive estimation method through two real data examples.

The rest of the article is organized as follows. In Section 2, we introduce the new adaptive estimation for the varying
coefficientmodels and the EM algorithm. In Section 3, we compare our proposed approachwith the traditional least squares
based estimation for five different error densities through a simulation study and then apply the new method to two real
data examples.We conclude this article with a brief discussion in Section 4. All technical conditions and proofs are relegated
to the Appendix.

2. New adaptive estimation

2.1. Introduction to the new method

Suppose that {xi, ui, yi, i = 1, . . . , n} is a random sample from model (1.1). For u in a neighborhood of u0, we can ap-
proximate the varying coefficient functions locally as

gj(u) ≈ gj(u0) + g ′

j (u0)(u − u0) ≡ bj + cj(u − u0), for j = 1, . . . , d. (2.1)

The traditional local linear estimation of (1.1) is to minimize

n
i=1

Kh(ui − u0)


yi −

d
j=1

{bj + cj(ui − u0)}xij

2

, (2.2)

with respect to (b1, . . . , bd) and (c1, . . . , cd) for a given kernel density K(·) and a bandwidth h, where Kh(t) = h−1K(t/h).
It is well known that the choice of kernel function is not critical in terms of estimation efficiency. Throughout this article,
a Gaussian kernel will be used for K(·). Due to the least squares in (2.2), the resulting estimate may lose some efficiency
when the error distribution is not normal. Therefore, it is desirable to develop an estimation procedure which can adapt to
different error distributions.

Let f (ϵ) be the density function of ϵ. If f (ϵ) were known, it would be natural to estimate the local parameters in (2.1) by
maximizing the following local log-likelihood function

n
i=1

Kh(ui − u0) log f


yi −

d
j=1

{bj + cj(ui − u0)}xij


. (2.3)

However, in practice, f (ϵ) is generally unknown but can be replaced by a kernel density estimate based on the initial
estimated residual ϵ̃1, . . . , ϵ̃n,

f̃ (ϵi) =
1
n

n
j≠i

Kh0


ϵi − ϵ̃j


, for i, j = 1, 2, . . . , n (2.4)

where ϵ̃i = yi −
d

j=1 g̃j(ui)xij and g̃j(·) can be estimated by least squares (or L1 norm, i.e., median regression) based
local linear estimate (2.2). Here we use leave-one-out kernel density estimate for f (ϵi) to remove the estimation bias. Let
θ = (b1, . . . , bd, c1, . . . , cd)T . Then our proposed adaptive local linear estimate for the local parameter θ is

θ̂ = argmax
θ

Q (θ), (2.5)
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where

Q (θ) =

n
i=1

Kh(ui − u0) log


1
n


j≠i

Kh0


yi −

d
l=1

{bl + cl(ui − u0)}xil − ϵ̃j


. (2.6)

The idea of adaptiveness can be traced back to Beran [1] and Stone [29], where the adaptive estimation was proposed
for location models. Later, this idea was extended to regression, time series and other models, see [2,25,28,26,6,18,39,38].
Linton and Xiao [24] proposed an elegant adaptive nonparametric regression estimator by maximizing the local likelihood
function. In fact, the adaptive method proposed in [24] can be seen as a special case of ours when d = 1 in (1.1). Recently,
Wang and Yao [33] and Yao and Zhao [37] extended the idea of adaptive estimation to sufficient dimension reduction and
linear regression, respectively.

2.2. Computation: an EM algorithm

Unlike least squares criterion, (2.5) does not have an explicit solution due to the summation inside the log function,which
is similar to the mixture structure. In this section, we propose an EM algorithm to maximize it by extending the generalized
modal EM algorithm proposed in [36].

Let θ(0) be an initial parameter estimate, such as the least squares (or L1 norm, i.e., median regression) based local linear
estimate. We can update the parameter estimate according to the following algorithm.

Algorithm 2.1. At (k + 1)th step, we calculate the following E and M steps:

E-Step: Calculate the classification probabilities p(k+1)
ij ,

p(k+1)
ij =

Kh0


yi −

d
l=1

{b(k)
l + c(k)

l (ui − u0)}xil − ϵ̃j



j≠i

Kh0


yi −

d
l=1

{b(k)
l + c(k)

l (ui − u0)}xil − ϵ̃j



∝ Kh0


yi −

d
l=1

{b(k)
l + c(k)

l (ui − u0)}xil − ϵ̃j


, 1 ≤ j ≠ i ≤ n. (2.7)

M-Step:Update θ(k+1),

θ(k+1)
= argmax

θ

n
i=1


j≠i


p(k+1)
ij Kh(ui − u0) log


Kh0


yi −

d
l=1

{bl + cl(ui − u0)}xil − ϵ̃j



= argmin
θ

n
i=1


j≠i


p(k+1)
ij Kh(ui − u0)


yi − ϵ̃j − zTi θ

2
,

=


n

i=1


j≠i

p(k+1)
ij Kh(ui − u0)zizTi

−1 n
i=1


j≠i

p(k+1)
ij Kh(ui − u0)(yi − ϵ̃j)zi (2.8)

where zi = {xTi , x
T
i (ui − u0)}

T and the second equation follows the use of Gaussian kernel for density estimation.

The above EM algorithm monotonically increases the estimated local log-likelihood (2.6) after each iteration, as shown
in the following proposition. Its proof is given in the Appendix.

Proposition 2.1. Each iteration of the above E and M steps will monotonically increase the local log-likelihood (2.6), i.e.,

Q (θ(k+1)) > Q (θ(k)),

for all k, where Q (·) is defined as in (2.6).

2.3. Asymptotic result

We now establish the consistency and derive the asymptotic distribution of the proposed adaptive local linear estimator
of θ. Define µk =


ukK(u)du and νk =


ukK 2(u)du. Let H = diag(1, h) ⊗ Id with ⊗ denoting the Kronecker product and

Id being the d × d identity matrix. Let q(·) denote the marginal density of u, and

Γjk(ui) = E(xijxik|ui) for 1 ≤ j, k ≤ d, i = 1, . . . , n, (2.9)

0(u0) =

Γjk(u0)


16j,k6d . (2.10)
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Theorem 2.1. Under the regularity conditions in the Appendix, with probability approaching 1, there exists a consistent local
maximizer θ̂ = (b̂1, . . . , b̂d, ĉ1, . . . , ĉd)T of (2.6) such that

H(θ̂ − θ) = Op{(nh)−1/2
+ h2

}.

Based on Theorem 2.1, we can know that the proposed adaptive local linear estimator of θ is consistent and its proof is
provided in the Appendix. Next, we provide the asymptotic distribution of the proposed estimator.

Theorem 2.2. Suppose that the regularity conditions in the Appendix hold. Then θ̂, given in Theorem 2.1, has the following
asymptotic distribution

√
nh


H(θ̂ − θ) − S−1 h

2

2

d
j=1

g ′′

j (u0)ψj(1 + op(1))


D

→N(02d, [E{ρ ′(ϵi)
2
}]

−1q(u0)
−1S−13S−1),

where 02d is a 2d × 1 vector with each entry being 0, ρ(·) = log f (·), S =


1 0
0 µ2


⊗ 0(u0), 3 =


ν0 ν1
ν1 ν2


⊗ 0(u0),

ψj =


µ2
µ3


⊗

Γjk(u0)

T
1≤k≤d, and 0(u0) is given by (2.10).

A sketch of the proof of the above theorems is provided in the Appendix. As shown in [24], one important property
of the proposed adaptive estimate is that it achieves the same asymptotic efficiency as if the error density were known.
Therefore, estimating f by kernel density estimation will not affect the asymptotic distribution of the resulting estimator of
θ. As Linton and Xiao [24] pointed out that such a new estimation method can ‘‘do as well as the corresponding estimator one
would compute if one knew the error density’’. However it is not possible to achieve the lower bound here [8]. Any specific
estimator can be bettered for some specific model setting.

Note that the least squares based local linear estimate [40], byminimizing (2.2), has the same asymptotic bias as the new
method but slightly different asymptotic variance, which replaces [E{ρ ′(ϵi)

2
}]

−1 by σ 2
= E(ϵ2). Based on Cauchy–Schwarz

inequality, we have

E{ρ ′(ϵi)
2
}E(ϵ2) ≥ [E{ϵρ ′(ϵ)}]2 = 1

and the equality holds if and only ifρ ′(ϵ) ∝ ϵ, i.e., f (ϵ) is a normal density. Therefore, [E{ρ ′(ϵi)
2
}]

−1
≤ σ 2 and the asymptotic

variance of the new estimator is no larger than that of least squares based local linear estimate for any error density f (ϵ).

3. Examples

3.1. Simulation study

In this section, we conduct a simulation study to compare the proposed adaptive estimation (Adapt) with the traditional
least squares based kernel estimation (LS) for varying coefficient models. The following five error distributions of ϵ were
considered in our numerical experiment:
1. N(0, 1);
2. t3;
3. 0.5N(−1, 0.52) + 0.5N(1, 0.52);
4. 0.3N(−1.4, 1) + 0.7N(0.6, 0.42);
5. 0.9N(0, 1) + 0.1N(0, 102).

The standard normal distribution serves as a baseline in our comparison. The second one is a t-distribution with 3 degrees
of freedom. The third density is bimodal and the fourth one is left skewed. The last one is a contaminated normal mixture
distribution, where 10% of the data from N(0, 102) are most likely to be outliers.

For each of the above error distributions, we consider the following two models:

Model 1: y = g1(u) + g2(u)x1 + g3(u)x2 + ϵ, where g1(u) = exp(2u − 1), g2(u) = 8u(1 − u), and g3(u) = 2 sin2(2πu).
Model 2: y = g1(u)+g2(u)x1+g3(u)x2+ϵ, where g1(u) = sin(2πu), g2(u) = (2u−1)2+0.5, and g3(u) = exp(2u−1)−1.

In bothmodels, x1 and x2 follow a standard normal distributionwith correlation coefficient γ = 1/
√
2. The index variable

u is a uniform random variable on [0, 1], and is independent of (x1, x2). There are two bandwidths in the estimation, h in
the local log-likelihood and h0 in the kernel density estimation. An asymptotic optimal h can be found by minimizing the
asymptotic mean squared errors provide in Theorem 2.2 and can be estimated by a plug-in estimator which replaces the
unknown quantities in Theorem 2.2 by their estimates. In our examples, the bandwidth h is chosen by leave-one-out cross-
validation with more details in [12], and h0 = h/ log(n) following Linton and Xiao [24]. The performance of estimator ĝ(·)
is assessed via the square root of the average squared errors (RASE; Cai et al. [3]; Wang et al. [31]),

RASE2
=

1
N

N
k=1

3
j=1

[ĝj(uk) − gj(uk)]
2, (3.1)
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Table 1
Model 1 estimation accuracy comparison—RASE and its standard error in brackets.

ϵ n = 200 n = 400
LS Adapt LS Adapt

1 0.483(0.079) 0.439(0.081) 0.366(0.053) 0.324(0.053)
2 0.671(0.167) 0.601(0.139) 0.493(0.111) 0.422(0.086)
3 0.500(0.083) 0.401(0.077) 0.379(0.061) 0.277(0.048)
4 0.508(0.088) 0.376(0.082) 0.383(0.062) 0.262(0.045)
5 1.188(0.411) 0.720(0.220) 0.871(0.227) 0.459(0.098)

Table 2
Model 2 estimation accuracy comparison—RASE and its standard error in brackets.

ϵ n = 200 n = 400
LS Adapt LS Adapt

1 0.362(0.077) 0.380(0.074) 0.263(0.051) 0.275(0.049)
2 0.618(0.301) 0.566(0.201) 0.431(0.129) 0.384(0.076)
3 0.412(0.091) 0.351(0.080) 0.290(0.059) 0.215(0.041)
4 0.407(0.102) 0.319(0.089) 0.291(0.061) 0.207(0.051)
5 1.133(0.397) 0.669(0.224) 0.828(0.224) 0.436(0.101)

(a) g1(u). (b) g2(u). (c) g3(u).

Fig. 1. Estimated coefficient functions with 95% pointwise confidence intervals (blue dotted line for Adapt and red solid line for LS) for model 1.

where uk, k = 1, . . . ,N , are the equally spaced grid points at which the functions gj(·) were evaluated. We conduct two
sets of simulations with sample size n = 200 and 400 respectively, each with 200 data replications.

The simulation results are summarized in Tables 1 and 2. We can clearly see that the proposed adaptive estimation
outperforms the least squares method when the error is non-normal. The gain in estimation efficiency can be quite
substantial even formoderate sample sizes.When the error follows exactly normal distribution, our approach is still broadly
comparable with the least squares based method.

Figs. 1 and 2 plot the estimated coefficient functions and the 95% pointwise confidence intervals based on a typical
sample when n = 200 and the error distribution is the contaminated normal mixture (Case 5). Due to the complex forms
of the asymptotic standard errors of the coefficient functions, similar to Wang, Kai and Li [31], we adopt the bootstrap
method to calculate the 95% pointwise confidence intervals. As expected, the adaptive estimationmethod provides narrower
confidence intervals than the least squares based method, since the adaptive method provides more accurate estimate than
the least squares estimate when the error is not normal.
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(a) g1(u). (b) g2(u). (c) g3(u).

Fig. 2. Estimated coefficient functions with 95% pointwise confidence intervals (blue dotted line for Adapt and red solid line for LS) for model 2.

3.2. Real-data applications

Example 1 (Hong Kong Environmental Data). We now illustrate the adaptive estimation method via an application to an
environmental data set. The data were collected daily in Hong Kong from January 1, 1994, to December 31, 1995 and have
been analyzed by Fan and Zhang [12], Cai et al. [3], Xia et al. [35] and Fan and Zhang [14]. In this data set, a collection of
daily measurements of pollutants and other environmental factors are included. Following Fan and Zhang [12], we consider
three pollutants: sulfur dioxide x2 (in µg/m3), nitrogen dioxide x3 (in µg/m3), and respirable suspended particulates x4
(in µg/m3) (this variable is named as ‘dust’ in [12,14,3]). The response variable y is the logarithm of the number of daily
hospital admissions. We set x1 = 1 as the intercept term and let u denote time which is scaled to the interval [0, 1]. As in
the previous analyses, all three predictors are centered. The following varying coefficient model is considered to investigate
the relationship between y and the levels of pollutants x2, x3, and x4.

y = g1(u) + g2(u)x2 + g3(u)x3 + g4(u)x4 + ϵ.

We set aside 50 observations as the test set. The bandwidth h, selected by leave-one-out cross-validation, is around
0.146. The estimated coefficient functions together with 95% pointwise confidence intervals are depicted in Fig. 3. We also
compare the median squared prediction errors, MSPE = Median{(yj − ŷj)2, j = 1, . . . , k}, from our adaptive approach and
the traditional least squares estimation, where k = 50 and ŷj = ĝ1(uj) + ĝ2(uj)xj2 + ĝ3(uj)xj3 + ĝ4(uj)xj4. The MSPE from
our adaptive approach is 0.0183, compared to 0.0178 from the LS estimation.

In Fig. 5(a), we give the residual QQ-plot for Hong Kong environmental data. From the plot, we can see that the residual
is very close to normal, which explains why the MSPE of the adaptive approach is close to the MSPE of the LS estimation.

Example 2 (Boston Housing Data). The Boston Housing Data (corrected version in [16]), which has been analyzed by Fan and
Huang [11], Wang and Xia [32] and Sun et al. [30], is publicly available in the R packagemlbench, (http://cran.r-project.org/).
This data set includes the median value of owner-occupied homes in 506 US census tracts of the Boston area in 1970 and
several variables that might explain the variation of housing values. Following Fan and Huang [11] and Wang and Xia [32],
we considered seven independent variables: CRIM (per capita crime rate by town), RM (average number of rooms per
dwelling), TAX (full-value property-tax rate per $10,000), NOX (nitric oxides concentration parts per 10 million), PTRATIO
(pupil–teacher ratio by town), AGE (proportion of owner-occupied units built prior to 1940), and LSTAT (lower status of the
population). The response variable is CMEDV (correctedmedian value of owner-occupied homes in USD 1000’s). We denote
the covariates CRIM, RM, TAX, NOX, PTRATIO and AGE to be x2, x3, . . . , x7, respectively. Let x1 = 1 be the intercept term and
u =

√
LSTAT be the index variable. By doing so, we can fit different regression models at different lower status population

percentage [11]. Following Fan and Huang [11] we use the square root transformation on the index variable LSTAT to make

http://cran.r-project.org/
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(a) g1(u). (b) g2(u).

(c) g3(u). (d) g4(u).

Fig. 3. Estimated coefficient functions (solid curves) with 95% pointwise confidence intervals (dotted curves) for Hong Kong environmental data.

the data symmetrically distributed. The following varying coefficient model was fit to the data,

yi = g1(ui) +

7
j=2

gj(ui)xij + ϵi.

Similar to the analysis in the previous example, we set aside 50 observations for checking prediction errors. The
bandwidth h was selected by leave-one-out cross-validation, which is around 0.294. The estimated coefficient functions
are depicted in Fig. 4. From the plot, we can see that the coefficient functions of x2 (CRIM) and x3 (RM) vary over time. The
coefficient functions of x4 (TAX), x5 (NOX), and x7 (AGE) are very close to zero and the coefficient function of x6 (PTRATIO)
shows no significant trend. These discoveries are consistent with those from [11,32]. In terms of the median squared
prediction error (MSPE), the MSPE from our adaptive approach is 0.0484, compared to 0.0604 from the LS estimation.

In Fig. 5(b), the QQ-plot of residuals from the above fit showed a clear deviation from normality, which explains why the
MSPE from the adaptive approach is much smaller than the MSPE from the LS estimation.

4. Discussion

In this article, we proposed an adaptive estimation for varying coefficient models. The new estimation procedure can
adapt to different errors and thus provide a more efficient estimate than the traditional least squares based estimate.
Simulation studies and two real data applications confirmed our theoretical findings.

It will be interesting to know whether we can also perform some adaptive hypothesis tests for the coefficient functions
using the estimated error density. For example, we might be interested in testing some parametric assumptions, such
as constant or zero, for the coefficient functions. It requires more research about whether the Wilks phenomenon for
generalized likelihood ratio statistic proposed by Fan et al. [15] still holds for the proposed adaptive varying coefficient
models.

The idea of the proposed adaptive estimator might also be generalized to many other models, such as varying coefficient
partial linear models and nonparametric additive models. In addition, by combining this adaptive idea with shrinkage
estimation, we can develop adaptive variable selection procedures. Such study is under way.

Zhang and Lee [40] investigated variable bandwidth selection for varying coefficient models and studied asymptotic
properties of the resulting estimators and the bandwidth. It is our interest to extend their variable bandwidth selection
method and the corresponding asymptotic properties to our adaptive estimation procedure.
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(a) g2(u). (b) g3(u). (c) g4(u).

(d) g5(u). (e) g6(u). (f) g7(u).

Fig. 4. Estimated coefficient functions (solid curves) with 95% pointwise confidence intervals (dotted curves) for Boston housing data.

(a) Residual QQ plot of the environmental data. (b) Residual QQ plot of the Boston housing data.

Fig. 5. Residual QQ-plot for two data examples: (a) Hong Kong environmental data; (b) Boston housing data.

As one referee pointed out that we could also extend the idea of Yuan and De Gooijer [39] to derive an adaptive estimate
for varying coefficient model. Let ϵi(θ) = yi −

d
l=1[bl + cl(ui − u0)], and

fn(ϵi(θ)) =
1

n − 1


j≠i

Kh(r(ϵi(θ)) − r(ϵj(θ))).
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Based on Yuan and De Gooijer [39], we can estimate θ by

θ̂ = argmax
θ

n
i=1

Kh(ui − u0) log fn(ϵi(θ)).

Here, r(·) is some monotone nonlinear function that is used to avoid the cancellation of the intercept terms bls in fn(ϵi(θ)).
One advantage of the above method is that it does not require an initial estimate. However, compared to the proposed
estimate in this paper, the asymptotic variance of the above estimator depends on the choice of r(·) and generally does not
reach the Cramér–Rao lower bound for a nonlinear function r(·). In addition, the computation of the above estimator is also
more expensive due to the nonlinear function r(·).
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Appendix

We first list the regularity conditions used in our proof.

Conditions. 1. K(·) is bounded, symmetric, and has bounded support and bounded derivative;
2. {xi}i, {ui}i, {ϵi}i are independent and identically distributed and {ϵi}i is independent of {xi}i and {ui}i, where {xi}i means

{x1, . . . , xn}, same for notations {ui}i and {ϵi}i. Additionally, the predictor x has a bounded support;
3. The probability distribution function f (·) of ϵ has bounded continuous derivatives up to order 4. Let ρ(ϵ) = log f (ϵ).

Assume E[ρ ′(ϵi)] = 0, E[ρ ′′(ϵi)] < ∞, E[ρ ′(ϵi)
2
] < ∞ and ρ ′′′(·) is bounded;

4. The marginal density of u has a continuous second derivative in some neighborhood of u0 and q(u0) ≠ 0;
5. h → 0, nh → ∞ as n → ∞ and h0 = h/ log(n);
6. gj(·) has bounded, continuous 3rd derivatives for 1 ≤ j ≤ d.
These conditions are adopted from [12,24]. They are not the weakest possible conditions. For instance, we can relax the
bounded support assumption of K(·). All the asymptotic results still hold if we put a restriction on the tail of K(·). For
example, lim supt→∞ |K(t)t5| < ∞ [10]. The independence of {xi}i and {ϵi}i can be relaxed based on the discussion of
Section 4 of Linton and Xiao [24].

Proof of Proposition 2.1. Note that

Q (θ(k+1)) − Q (θ(k)) =

n
i=1

Kh(ui − u0) log



j≠i

Kh0


yi −

d
l=1


b(k+1)
l + c(k+1)

l (ui − u0)

xil − ϵ̃j



j≠i

Kh0


yi −

d
l=1


b(k)
l + c(k)

l (ui − u0)

xil − ϵ̃j




=

n
i=1

Kh(ui − u0) log

j≠i


Kh0


yi −

d
l=1


b(k)
l + c(k)

l (ui − u0)

xil − ϵ̃j



j≠i

Kh0


yi −

d
l=1


b(k)
l + c(k)

l (ui − u0)

xil − ϵ̃j




×


Kh0


yi −

d
l=1


b(k+1)
l + c(k+1)

l (ui − u0)

xil − ϵ̃j


Kh0


yi −

d
l=1


b(k)
l + c(k)

l (ui − u0)

xil − ϵ̃j




=

n
i=1

Kh(ui − u0) log



j≠i

p(k+1)
ij

Kh0


yi −

d
l=1


b(k+1)
l + c(k+1)

l (ui − u0)

xil − ϵ̃j


Kh0


yi −

d
l=1


b(k)
l + c(k)

l (ui − u0)

xil − ϵ̃j


 ,

where

p(k+1)
ij =

Kh0


yi −

d
l=1

{b(k)
l + c(k)

l (ui − u0)}xil − ϵ̃j



j≠i

Kh0


yi −

d
l=1

{b(k)
l + c(k)

l (ui − u0)}xil − ϵ̃j

 .
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From Jensen’s inequality, we have

Q (θ(k+1)) − Q (θ(k)) >

n
i=1

Kh(ui − u0)

j≠i

p(k+1)
ij log


Kh0


yi −

d
l=1


b(k+1)
l + c(k+1)

l (ui − u0)

xil − ϵ̃j


Kh0


yi −

d
l=1


b(k)
l + c(k)

l (ui − u0)

xil − ϵ̃j


 .

Based on the property of M-step of (2.8), we have Q (θ(k+1)) − Q (θ(k)) ≥ 0. �

Proof of Theorem 2.1. Note that the estimator θ̂ is the maximizer of the following objective function

argmax
θ

n
i=1

Kh(ui − u0) log f̃


yi −

d
l=1

{bl + cl(ui − u0)}xil


, (4.1)

where

f̃ (ϵi) =
1
n


j≠i

Kh0


ϵi − ϵ̃j


is the kernel density estimate of f (·), and ϵ̃i is the residual based on the least squares local linear estimate. By the adaptive
nonparametric regression result of Linton and Xiao [24], the asymptotic result of θ̂ in (4.1) is the samewhether the true den-
sity f (·) is used or not. Therefore, wewillmainly show the existence and asymptotic distribution of θ̂ assuming f (·) is known.

We will first prove that with probability approaching 1, there exists a consistent local maximizer θ̂ = (b̂1, . . . , b̂d,
ĉ1, . . . , ĉd)T of (2.6) such that

H(θ̂ − θ) = Op{(nh)−1/2
+ h2

}.

Then we establish the asymptotic distributions for such consistent estimate.
Denote θ∗

= Hθ, x∗

i = (xi1, xi2, . . . , xid, (
ui−u0

h )xi1, . . . , (
ui−u0

h )xid)T , Ki = Kh(ui − u0), R(ui, xi) =
d

j=1 gj(ui)xij −d
j=1[bj + cj(ui − u0)]xij, and an = (nh)−1/2

+ h2. Let ρ(·) = log f (·), we have the objective function

L(θ) =
1
n

n
i=1

Kiρ(yi − θ∗Tx∗

i ) = L(θ∗).

It is sufficient to show that for any given η > 0, there exists a large constant c such that

P


sup
∥µ∥=c

L(θ∗
+ anµ) < L(θ∗)


≥ 1 − η,

where µ has the same dimension as θ, an is the convergence rate. By using Taylor expansion, it follows that

L(θ∗
+ anµ) − L(θ∗) =

1
n

n
i=1

Ki{ρ(ϵi + R(ui, xi) − anµTx∗

i ) − ρ(ϵi + R(ui, xi))}

= −
1
n

n
i=1

Kiρ
′(ϵi + R(ui, xi))anµTx∗

i +
1
2n

n
i=1

Kiρ
′′(ϵi + R(ui, xi))a2n(µ

Tx∗

i )
2

−
1
6n

n
i=1

Kiρ
′′′(zi)a3n(µ

Tx∗

i )
3

∆
= I1 + I2 + I3,

where zi is a value between ϵi + R(ui, xi) − anµTx∗

i and ϵi + R(ui, xi). For I1 = −
1
n

n
i=1 Kiρ

′(ϵi + R(ui, xi))anµTx∗

i ,
E(I1) = −E


Kiρ

′(ϵi + R(ui, xi))anµTx∗

i


. We have,

ρ ′(ϵi + R(ui, xi)) ≈ ρ ′(ϵi) + ρ ′′(ϵi)R(ui, xi) +
1
2
ρ ′′′(ϵi)R2(ui, xi).

Based on the assumption that ϵ is independent of u and x, and E[ρ ′(ϵi)] = 0, we have

E(I1) ≈ −anE

Ki


ρ ′′(ϵi)R(ui, xi) +

1
2
ρ ′′′(ϵi)R2(ui, xi)


µTx∗

i


.
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Since

R(ui, xi) =

d
j=1

gj(ui)xij −
d

j=1

[bj + cj(ui − u0)]xij

=

d
j=1


∞

m=2

1
m!

g(m)
j (u0)(ui − u0)

m


xij

= Op(h2),

then 1
2ρ

′′′(ϵi)R2(ui, xi) = [Op(h2)]2 = Op(h4), which is a smaller order than ρ ′′(ϵi)R(ui, xi). Thus,

E(I1) ≈ −anE

Kiρ

′′(ϵi)R(ui, xi)µTx∗

i


= −anE


ρ ′′(ϵi)


E

KiR(ui, xi)µTx∗

i


.

Let δ1 = E

ρ ′′(ϵi)


, then

E(I1) ≈ −anδ1E

KiR(ui, xi)µTx∗

i


= −anδ1E


E

R(ui, xi)µTx∗

i |ui

Ki

.

By µTx∗

i ≤ ∥µ∥ ·
x∗

i

 = c
x∗

i

, we have E(I1) = O(anch2).

var(I1) =
1
n
var


Kiρ

′(ϵi + R(ui, xi))anµTx∗

i


=

1
n
{E(A2) − [E(A)]2},

where A = Kiρ
′(ϵi + R(ui, xi))anµTx∗

i . Let δ2 = E

ρ ′(ϵi)

2

, then

E(A2) = E

K 2
i ρ ′(ϵi + R(ui, xi))2a2n(µ

Tx∗

i )
2

≈ a2nE

K 2
i ρ ′(ϵi)

2(µTx∗

i )
2

= a2nδ2E

E

(µTx∗

i )
2
|ui

K 2
i


= O


a2nc

2 1
h


.

Note that [E(A)]2 =

O(anch2)

2
≪ E(A2), then var(I1) ≈

1
nE(A

2) = O

a2nc

2 1
nh


. Hence, I1 = E(I1) + Op(

√
var(I1)) =

Op(anch2) + Op


a2nc2

1
nh


= Op(ca2n). For I2 =

1
2n

n
i=1 Kiρ

′′(ϵi + R(ui, xi))a2n(µ
Tx∗

i )
2,

E(I2) =
1
2
a2nE


Kiρ

′′(ϵi + R(ui, xi))(µTx∗

i )
2

=
1
2
a2nE


ρ ′′(ϵi)Ki(µ

Tx∗

i )
2 (1 + o(1))

=
1
2
a2nδ1E


E

µTx∗

i x
∗T
i µ|ui


Ki

(1 + o(1))

=
1
2
a2nδ1µ

TE

E

x∗

i x
∗T
i |ui


Ki

µ(1 + o(1)).

Note that x∗

i x
∗T
i =


xijxik

 ui−u0
h

l
1≤j,k≤d,l=0,1,2

and Γjk(ui) = E(xijxik|ui) for 1 ≤ j, k ≤ d, then

E


E


xijxik


ui − u0

h

l ui


Ki


= E


E(xijxik|ui)


ui − u0

h

l

Ki



= E


Γjk(ui)


ui − u0

h

l

Ki


.

By using Taylor expansion, we obtain

E


E


xijxik


ui − u0

h

l ui


Ki


=

1
h


Γjk(ui)


ui − u0

h

l

K

ui − u0

h


q(ui)dui

= q(u0)Γjk(u0)


t lK(t)dt(1 + o(1)).
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So we have

E(I2) =
1
2
a2nδ1q(u0)µ

TSµ(1 + o(1)),

where S =


1 0
0 µ2


⊗ 0(u0) is a 2d × 2d matrix. Thus,

E(I2) = O(a2nδ1q(u0)µ
TSµ)

and

var(I2) =
a4n
4n

var

ρ ′′(ϵi + R(ui, xi))Ki(µ

Tx∗

i )
2

=
a4n
4n


E(B2) − [E(B)]2


,

where B = ρ ′′(ϵi + R(ui, xi))Ki(µ
Tx∗

i )
2. Let δ3 = E


ρ ′′(ϵi)

2

, then

E(B2) = E

ρ ′′(ϵi + R(ui, xi))2K 2

i (µTx∗

i )
4

≈ E

ρ ′′(ϵi)

2K 2
i (µTx∗

i )
4

= δ3E

K 2
i (µTx∗

i )
4

= O

1
h


.

Note that [E(B)]2 = [O(1)]2 = O(1) ≪ E(B2), so var(I2) = O


a4n
nh


. Based on the result I2 = E(I2) + Op(

√
var(I2)) and the

assumption nh → ∞, it follows that

I2 = a2nδ1q(u0)µ
TSµ(1 + op(1)).

Similarly, I3 = −
1
6n

n
i=1 Kiρ

′′′(zi)a3n(µ
Tx∗

i )
3

= Op(a3n).
Assume δ1 < 0. Noticing that S is a positivematrix, ∥µ∥ = c , we can choose c large enough such that I2 dominates both I1

and I3 with probability at least 1− η. Thus P

sup∥µ∥=c L(θ

∗
+ anµ) < L(θ∗)


≥ 1− η. Hence with probability approaching

1, there exists a local maximizer θ̂
∗

such that
θ̂∗

− θ∗

 ≤ anc , where an = (nh)−1/2
+ h2. Based on the definition of θ∗, we

can get, with probability approaching 1, H(θ̂ − θ) = Op((nh)−1/2
+ h2). �

Proof of Theorem 2.2. Now we provide the asymptotic distribution for such consistent estimate. Since θ̂ maximizes L(θ),
then L′(θ̂) = 0. By Taylor expansion,

0 = L′(θ̂) = L′(θ0) + L′′(θ0)(θ̂ − θ0) +
1
2
L′′′(θ̃)(θ̂ − θ0)

2,

where θ̃ is a value between θ̂ and θ0. Then θ̂ − θ0 = −[L′′(θ0)]
−1L′(θ0)(1 + op(1)). Since L(θ) = L(θ∗) =

1
n

n
i=1 Kiρ(yi −

θ∗Tx∗

i ) and yi − θ∗Tx∗

i = ϵi + R(ui, xi), then L′′(θ∗) =
1
n

n
i=1 Kiρ

′′(ϵi + R(ui, xi))x∗

i x
∗T
i . We have the following expectation,

E[L′′(θ∗)] = E

ρ ′′(ϵi + R(ui, xi))Kix∗

i x
∗T
i


≈ E


ρ ′′(ϵi)Kix∗

i x
∗T
i


= δ1E


E

x∗

i x
∗T
i |ui


Ki


= δ1q(u0)S(1 + o(1)).

Throughout this article, we consider the element-wise variance of a matrix,

var[L′′(θ∗)] =
1
n
var


Kiρ

′′(ϵi + R(ui, xi))x∗

i x
∗T
i


= O


1
nh


.

Based on the result L′′(θ∗) = E[L′′(θ∗)] + Op(

var[L′′(θ∗)]) and the assumption nh → ∞, it follows that

L′′(θ∗) = δ1q(u0)S(1 + op(1)).

For L′(θ∗), we can divide it into two parts.

L′(θ∗) = −
1
n

n
i=1

Kiρ
′(ϵi + R(ui, xi))x∗

i
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≈ −
1
n

n
i=1

Kiρ
′(ϵi)x∗

i −
1
n

n
i=1

Kiρ
′′(ϵi)R(ui, xi)x∗

i

∆
= −wn − νn.

The asymptotic result is determined bywn. In order to find the order of νn, we compute the following things.

E(νn) = E

Kiρ

′′(ϵi)R(ui, xi)x∗

i


= δ1E


E

R(ui, xi)x∗

i |ui

Ki

.

Since g ′′′

j (·) is bounded, then we have

R(ui, xi) =

d
j=1


∞

m=2

1
m!

g(m)
j (u0)(ui − u0)

m


xij =

d
j=1

1
2
g ′′

j (u0)(ui − u0)
2xij(1 + op(1)).

By x∗

i = (xi1, . . . , xid, (
ui−u0

h )xi1, . . . , (
ui−u0

h )xid)T ,

R(ui, xi)x∗

i ≈

 (ui − u0)
2

2


d

j=1

g ′′

j (u0)xij


xik


1≤k≤d

,


(ui − u0)

3

2h


d

j=1

g ′′

j (u0)xij


xik


1≤k≤d

T

2d×1

.

Since

E


E


d

j=1

g ′′

j (u0)xij


xik|ui


(ui − u0)

2

2
Ki


= E


d

j=1

g ′′

j (u0)E(xijxik|ui)
(ui − u0)

2

2
Ki



= E


d

j=1

g ′′

j (u0)Γjk(ui)
(ui − u0)

2

2
Ki



=

d
j=1

g ′′

j (u0)E

Γjk(ui)

(ui − u0)
2

2
Ki



=

d
j=1

g ′′

j (u0)
1
h


Γjk(ui)

(ui − u0)
2

2
K

ui − u0

h


q(ui)dui

=
h2

2
q(u0)

d
j=1

g ′′

j (u0)Γjk(u0)


t2K(t)dt(1 + o(1))

and

E


E


d

j=1

g ′′

j (u0)xij


xik|ui


(ui − u0)

3

2h
Ki


= E


d

j=1

g ′′

j (u0)Γjk(ui)
(ui − u0)

3

2h
Ki



=

d
j=1

g ′′

j (u0)
1
2h

E

Γjk(ui)(ui − u0)

3Ki


=
h2

2
q(u0)

d
j=1

g ′′

j (u0)Γjk(u0)


t3K(t)dt(1 + o(1)),

then

E(νn) = δ1q(u0)
h2

2

d
j=1

g ′′

j (u0)ψj(1 + o(1)),

whereψj =


µ2
µ3


⊗

Γjk(u0)

T
1≤k≤d is a 2d×1 vector for j = 1, . . . , d. Since var(νn) = var


Kiρ

′′(ϵi)R(ui, xi)x∗

i


/n = O(h3/n),

then based on the result νn = E(νn) + Op(
√
var(νn)) and the assumption nh → ∞, it follows that

νn = δ1q(u0)
h2

2

d
j=1

g ′′

j (u0)ψj(1 + op(1)).

Then

θ̂∗
− θ∗

= −[L′′(θ∗)]−1L′(θ∗)(1 + op(1))
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= − [δ1q(u0)S]−1 (−wn − νn)(1 + op(1))

=
S−1wn

δ1q(u0)
(1 + op(1)) + S−1 h

2

2

d
j=1

g ′′

j (u0)ψj(1 + op(1)). (4.2)

Based on the assumption E[ρ ′(ϵi)] = 0, we can easily get E(wn) = 0.

var(wn) =
1
n
var


Kiρ

′(ϵi)x∗

i


=

1
n
E

K 2
i ρ ′(ϵi)

2x∗

i x
∗T
i


=

1
n
δ2E


E

x∗

i x
∗T
i |ui


K 2
i


.

Since x∗

i x
∗T
i =


xijxik

 ui−u0
h

l
1≤j,k≤d,l=0,1,2

and

E


E


xijxik


ui − u0

h

l ui


K 2
i


= E


E

xijxik|ui

ui − u0

h

l

K 2
i



= E


Γjk(ui)


ui − u0

h

l

K 2
i


=

1
h
q(u0)Γjk(u0)


t lK 2(t)dt(1 + o(1)),

then

E

E

x∗

i x
∗T
i |ui


K 2
i


=

1
h
q(u0)3(1 + o(1)),

where3 =


ν0 ν1
ν1 ν2


⊗ 0(u0) is a 2d × 2d matrix. So var(wn) =

1
nhδ2q(u0)3(1 + o(1)). We next use the Lyapunov central

limit theorem to obtain the asymptotic distribution of wn. The Lyapunov conditions are checked as follows. For any unit
vector d ∈ R2d, let dTwn =

n
i=1 ξi, where ξi =

1
nKiρ

′(ϵi)dTx∗

i . Since

E(ξ 2
i ) = E


1
n2

K 2
i ρ ′(ϵi)

2dTx∗

i x
∗T
i d


=
1
n2

δ2dTE

K 2
i x

∗

i x
∗T
i


d =

1
n2h

δ2q(u0)dT3d(1 + o(1)),

then o
n

i=1 E |ξi|
23

= o
 1

nh

3
. Let δ4 = E


ρ ′(ϵi)

3

, then

E(ξ 3
i ) = E


1
n3

K 3
i ρ ′(ϵi)

3(dTx∗

i )
3


=
1
n3

δ3E

K 3
i (dTx∗

i )
3

= O


1
n3h2


.

So
n

i=1 E |ξi|
32

= O


1
n2h2

2
. Since


1

n2h2

2
(nh)3 =

1
nh → 0, then


1

n2h2

2
= o

 1
nh

3
, which is equivalent ton

i=1 E |ξi|
32

= o
n

i=1 E |ξi|
23. Based on Lyapunov Central Limit Theorem,

wn
√
var(wn)

D
→N(02d, I2d),

where 02d is a 2d × 1 vector with each entry being 0; I2d is a 2d × 2d identity matrix. Previously, we already computed that
var(wn) =

1
nhδ2q(u0)3(1 + o(1)), by Slutsky’s Theorem,

√
nhwn

D
→N(02d, δ2q(u0)3).

Based on (4.2), we have the following result

√
nh


H(θ̂ − θ) − S−1 h

2

2

d
j=1

g ′′

j (u0)ψj(1 + op(1))


D

→N(02d, δ
−2
1 δ2q(u0)

−1S−13S−1).
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